Impact Analysis
Impact analysis in NopeSight helps you understand the consequences of changes, failures, or disruptions to your services. By leveraging service mapping and AI-powered predictions, you can make informed decisions and minimize business disruption.
Impact Analysis Framework
Change Impact Analysis
Pre-Change Assessment
class ChangeImpactAnalyzer:
def __init__(self):
self.service_map = ServiceMapRepository()
self.impact_predictor = ImpactPredictor()
self.risk_calculator = RiskCalculator()
def analyze_change_impact(self, change_request):
"""Comprehensive change impact analysis"""
impact_analysis = {
'change_id': change_request.id,
'change_type': change_request.type,
'target_components': change_request.components,
'scheduled_time': change_request.scheduled_time,
'analysis_timestamp': datetime.now(),
'impacts': {},
'risks': {},
'recommendations': []
}
# Identify affected services
affected_services = self.identify_affected_services(
change_request.components
)
for service in affected_services:
service_impact = self.analyze_service_impact(
service,
change_request
)
impact_analysis['impacts'][service.id] = service_impact
# Calculate business impact
business_impact = self.calculate_business_impact(
service,
service_impact
)
impact_analysis['impacts'][service.id]['business'] = business_impact
# Analyze cascade effects
cascade_analysis = self.analyze_cascade_effects(
affected_services,
change_request
)
impact_analysis['cascade_effects'] = cascade_analysis
# Risk assessment
risk_assessment = self.assess_change_risk(
impact_analysis,
change_request
)
impact_analysis['risks'] = risk_assessment
# Generate recommendations
recommendations = self.generate_recommendations(
impact_analysis,
risk_assessment
)
impact_analysis['recommendations'] = recommendations
return impact_analysis
def analyze_service_impact(self, service, change):
"""Analyze impact on specific service"""
impact = {
'service': service.name,
'criticality': service.criticality,
'direct_impact': False,
'indirect_impact': False,
'downtime_required': False,
'performance_impact': None,
'functionality_impact': []
}
# Check direct impact
for component in change.components:
if component in service.components:
impact['direct_impact'] = True
# Analyze component role
component_role = service.get_component_role(component)
if component_role.is_critical:
impact['downtime_required'] = True
impact['downtime_duration'] = self.estimate_downtime(
component,
change.type
)
# Performance impact
if change.type in ['upgrade', 'configuration']:
perf_impact = self.predict_performance_impact(
component,
change
)
impact['performance_impact'] = perf_impact
# Check indirect impact through dependencies
dependencies = self.get_service_dependencies(service)
for dep in dependencies:
if any(comp in change.components for comp in dep.components):
impact['indirect_impact'] = True
impact['dependency_impacts'].append({
'dependency': dep.name,
'impact_type': self.classify_dependency_impact(dep, change),
'mitigation_available': dep.has_failover
})
return impact
Change Risk Matrix
Risk Matrix:
Dimensions:
Probability:
- Very Low (< 10%)
- Low (10-30%)
- Medium (30-60%)
- High (60-90%)
- Very High (> 90%)
Impact:
- Minimal (< 10 users)
- Minor (10-100 users)
- Moderate (100-1000 users)
- Major (1000-10000 users)
- Severe (> 10000 users)
Risk Levels:
Critical: Probability >= High AND Impact >= Major
High: Probability >= Medium AND Impact >= Moderate
Medium: Probability >= Low AND Impact >= Minor
Low: All other combinations
Actions:
Critical:
- Executive approval required
- Rollback plan mandatory
- War room standby
High:
- Management approval required
- Detailed testing required
- Communication plan needed
Change Simulation
class ChangeSimulator:
def simulate_change(self, change_request, environment='staging'):
"""Simulate change impact before implementation"""
simulation = {
'environment': environment,
'start_time': datetime.now(),
'scenarios': []
}
# Create simulation environment
sim_env = self.create_simulation_environment(
change_request.target_service,
environment
)
# Run baseline tests
baseline = self.run_baseline_tests(sim_env)
simulation['baseline'] = baseline
# Apply simulated change
self.apply_simulated_change(sim_env, change_request)
# Test scenarios
scenarios = [
'normal_load',
'peak_load',
'failure_condition',
'dependency_failure'
]
for scenario in scenarios:
result = self.run_scenario(sim_env, scenario)
simulation['scenarios'].append({
'scenario': scenario,
'result': result,
'performance_delta': self.calculate_delta(baseline, result),
'issues_found': result.issues,
'recommendation': self.analyze_scenario_result(result)
})
# Generate simulation report
simulation['summary'] = self.generate_simulation_summary(simulation)
simulation['confidence_score'] = self.calculate_confidence(simulation)
return simulation
Failure Impact Analysis
Failure Propagation
Real-time Failure Analysis
class FailureImpactAnalyzer {
constructor() {
this.serviceGraph = new ServiceDependencyGraph();
this.impactCalculator = new ImpactCalculator();
this.aiPredictor = new AIImpactPredictor();
}
async analyzeFailure(failedComponent) {
const analysis = {
component: failedComponent,
timestamp: new Date(),
immediateImpact: await this.getImmediateImpact(failedComponent),
propagation: await this.tracePropagation(failedComponent),
businessImpact: {},
estimatedRecovery: {},
recommendations: []
};
// Trace impact propagation
const impactGraph = await this.buildImpactGraph(failedComponent);
// Calculate service impacts
for (const service of impactGraph.affectedServices) {
const serviceImpact = await this.calculateServiceImpact(
service,
failedComponent
);
analysis.serviceImpacts[service.id] = {
service: service.name,
degradation: serviceImpact.degradationLevel,
affectedCapabilities: serviceImpact.capabilities,
userImpact: serviceImpact.affectedUsers,
alternativePaths: await this.findAlternativePaths(service, failedComponent)
};
}
// Calculate business impact
analysis.businessImpact = await this.calculateBusinessImpact(
analysis.serviceImpacts
);
// AI predictions
const predictions = await this.aiPredictor.predict({
failure: failedComponent,
currentState: analysis
});
analysis.predictions = {
cascadeRisk: predictions.cascadeRisk,
estimatedDuration: predictions.duration,
additionalFailures: predictions.likelyFailures
};
// Generate recovery recommendations
analysis.recommendations = this.generateRecoveryPlan(analysis);
return analysis;
}
async tracePropagation(failedComponent) {
const propagation = {
waves: [],
timeline: []
};
let currentWave = [failedComponent];
let waveNumber = 0;
while (currentWave.length > 0 && waveNumber < 10) {
const nextWave = [];
const waveImpacts = [];
for (const component of currentWave) {
const dependents = await this.getDependents(component);
for (const dependent of dependents) {
const impact = await this.calculatePropagationImpact(
component,
dependent
);
if (impact.severity > 0.3) { // Significant impact
nextWave.push(dependent);
waveImpacts.push({
component: dependent,
impact: impact,
estimatedTime: waveNumber * 5 + impact.propagationDelay
});
}
}
}
if (waveImpacts.length > 0) {
propagation.waves.push({
wave: waveNumber + 1,
impacts: waveImpacts
});
}
currentWave = nextWave;
waveNumber++;
}
return propagation;
}
}
Failure Scenarios
Common Failure Scenarios:
Database Failure:
Impact:
- Data unavailability
- Transaction failures
- Report generation stops
- API errors
Mitigation:
- Read replica promotion
- Cache serving
- Graceful degradation
- Queue buffering
Network Partition:
Impact:
- Service isolation
- Split-brain risk
- Data inconsistency
- Communication failures
Mitigation:
- Quorum-based decisions
- Circuit breakers
- Eventual consistency
- Manual intervention
Service Outage:
Impact:
- Feature unavailability
- Dependent service failures
- User experience degradation
- Revenue loss
Mitigation:
- Failover activation
- Feature flags
- Cached responses
- Alternative services
Business Impact Calculation
Impact Metrics
class BusinessImpactCalculator:
def calculate_business_impact(self, technical_impact):
"""Calculate business impact from technical failures"""
business_impact = {
'financial': self.calculate_financial_impact(technical_impact),
'operational': self.calculate_operational_impact(technical_impact),
'reputational': self.calculate_reputational_impact(technical_impact),
'compliance': self.calculate_compliance_impact(technical_impact),
'strategic': self.calculate_strategic_impact(technical_impact)
}
# Overall impact score
business_impact['overall_score'] = self.calculate_overall_score(
business_impact
)
# Impact classification
business_impact['classification'] = self.classify_impact(
business_impact['overall_score']
)
return business_impact
def calculate_financial_impact(self, technical_impact):
"""Calculate financial impact"""
financial_impact = {
'revenue_loss': 0,
'additional_costs': 0,
'penalties': 0,
'opportunity_cost': 0
}
# Revenue loss calculation
for service in technical_impact.affected_services:
if service.revenue_generating:
downtime_minutes = technical_impact.get_downtime(service)
revenue_per_minute = service.revenue_per_minute
financial_impact['revenue_loss'] += (
downtime_minutes * revenue_per_minute
)
# Factor in partial availability
if technical_impact.partial_availability:
degradation = technical_impact.get_degradation_factor(service)
financial_impact['revenue_loss'] *= degradation
# SLA penalties
for sla in technical_impact.breached_slas:
penalty = self.calculate_sla_penalty(sla)
financial_impact['penalties'] += penalty
# Additional operational costs
financial_impact['additional_costs'] = self.estimate_recovery_costs(
technical_impact
)
# Opportunity cost
financial_impact['opportunity_cost'] = self.calculate_opportunity_cost(
technical_impact
)
financial_impact['total'] = sum(financial_impact.values())
return financial_impact
Impact Visualization
class ImpactVisualizer {
visualizeImpact(impactAnalysis) {
// Create impact heatmap
const heatmapData = this.prepareHeatmapData(impactAnalysis);
const heatmap = {
type: 'heatmap',
data: heatmapData,
colorScale: {
0: '#00ff00', // No impact
25: '#90ee90', // Low impact
50: '#ffff00', // Medium impact
75: '#ff8c00', // High impact
100: '#ff0000' // Critical impact
},
dimensions: ['Service', 'Time'],
metrics: ['Impact Severity', 'User Count', 'Revenue Loss']
};
// Create impact timeline
const timeline = {
type: 'gantt',
data: this.prepareTimelineData(impactAnalysis),
tracks: [
'Component Failures',
'Service Degradation',
'Recovery Actions',
'Full Resolution'
]
};
// Create dependency impact graph
const dependencyGraph = {
type: 'force-directed',
nodes: this.prepareNodes(impactAnalysis),
edges: this.prepareEdges(impactAnalysis),
animations: {
failurePropagation: true,
recoveryProgress: true
}
};
return {
heatmap,
timeline,
dependencyGraph,
summary: this.createSummaryDashboard(impactAnalysis)
};
}
}
Predictive Impact Analysis
AI-Powered Predictions
class PredictiveImpactAnalyzer:
def __init__(self):
self.ml_models = {
'failure_predictor': self.load_failure_model(),
'impact_estimator': self.load_impact_model(),
'recovery_predictor': self.load_recovery_model()
}
self.historical_data = HistoricalIncidentData()
def predict_future_impacts(self, current_state, horizon='24h'):
"""Predict potential impacts in the future"""
predictions = {
'horizon': horizon,
'predicted_incidents': [],
'risk_areas': [],
'preventive_actions': []
}
# Analyze current trends
trends = self.analyze_current_trends(current_state)
# Predict component failures
failure_predictions = self.ml_models['failure_predictor'].predict(
features=self.extract_features(current_state, trends),
horizon=horizon
)
for prediction in failure_predictions:
if prediction.probability > 0.7:
# Predict impact of this failure
impact = self.predict_failure_impact(
prediction.component,
prediction.failure_type,
current_state
)
predictions['predicted_incidents'].append({
'component': prediction.component,
'probability': prediction.probability,
'estimated_time': prediction.estimated_time,
'impact': impact,
'confidence': prediction.confidence
})
# Identify risk areas
risk_areas = self.identify_risk_areas(
current_state,
predictions['predicted_incidents']
)
predictions['risk_areas'] = risk_areas
# Generate preventive actions
for incident in predictions['predicted_incidents']:
actions = self.generate_preventive_actions(incident)
predictions['preventive_actions'].extend(actions)
return predictions
def predict_failure_impact(self, component, failure_type, current_state):
"""Predict impact of a specific failure"""
# Find similar historical incidents
similar_incidents = self.historical_data.find_similar(
component=component,
failure_type=failure_type,
limit=20
)
# Extract patterns
impact_patterns = self.extract_impact_patterns(similar_incidents)
# Current context features
context_features = {
'current_load': current_state.get_load(component),
'time_of_day': datetime.now().hour,
'day_of_week': datetime.now().weekday(),
'dependencies': len(self.get_dependencies(component)),
'redundancy': self.has_redundancy(component),
'recent_changes': self.get_recent_changes(component)
}
# Predict impact
predicted_impact = self.ml_models['impact_estimator'].predict(
component_features=self.get_component_features(component),
failure_features=self.get_failure_features(failure_type),
context_features=context_features,
historical_patterns=impact_patterns
)
return {
'severity': predicted_impact.severity,
'duration': predicted_impact.duration,
'affected_services': predicted_impact.services,
'user_impact': predicted_impact.users,
'financial_impact': predicted_impact.financial,
'confidence': predicted_impact.confidence
}
Scenario Planning
Impact Scenarios:
Best Case:
- Quick detection
- Automatic failover works
- No data loss
- Minimal user impact
- Fast recovery
Expected Case:
- Normal detection time
- Some manual intervention
- Limited functionality
- Moderate user impact
- Standard recovery time
Worst Case:
- Delayed detection
- Failover fails
- Data corruption
- Full outage
- Extended recovery
Planning Factors:
- Time of occurrence
- Available staff
- System load
- Dependencies
- External factors
Mitigation Strategies
Automated Mitigation
class MitigationEngine:
def generate_mitigation_plan(self, impact_analysis):
"""Generate automated mitigation strategies"""
mitigation_plan = {
'immediate_actions': [],
'short_term_actions': [],
'long_term_improvements': [],
'automation_opportunities': []
}
# Immediate actions (< 5 minutes)
if impact_analysis.severity >= 'high':
mitigation_plan['immediate_actions'] = [
self.activate_failover(impact_analysis.failed_components),
self.enable_circuit_breakers(impact_analysis.at_risk_services),
self.scale_healthy_components(impact_analysis.bottlenecks),
self.activate_cache_serving(impact_analysis.affected_services),
self.notify_stakeholders(impact_analysis.business_impact)
]
# Short-term actions (< 1 hour)
mitigation_plan['short_term_actions'] = [
self.provision_additional_resources(impact_analysis),
self.implement_traffic_shaping(impact_analysis),
self.enable_degraded_mode(impact_analysis.affected_services),
self.prepare_communication(impact_analysis.user_impact)
]
# Long-term improvements
mitigation_plan['long_term_improvements'] =
self.analyze_improvement_opportunities(impact_analysis)
# Automation opportunities
mitigation_plan['automation_opportunities'] =
self.identify_automation_opportunities(impact_analysis)
return mitigation_plan
def activate_failover(self, failed_components):
"""Activate failover for failed components"""
failover_actions = []
for component in failed_components:
if component.has_failover:
action = {
'type': 'failover',
'component': component.id,
'target': component.failover_target,
'steps': [
f"Verify {component.failover_target} health",
f"Update DNS/load balancer to {component.failover_target}",
f"Redirect traffic from {component.id}",
"Verify service restoration",
"Monitor failover stability"
],
'automation_available': component.automated_failover,
'estimated_time': '2-5 minutes'
}
failover_actions.append(action)
return failover_actions
Communication Planning
Communication Strategy:
Stakeholder Matrix:
Executive Team:
- Trigger: Revenue impact > $100k or Users > 10k
- Format: Executive summary + impact metrics
- Frequency: Initial + hourly updates
Technical Teams:
- Trigger: Any service degradation
- Format: Technical details + action items
- Frequency: Real-time updates
Customer Support:
- Trigger: User-facing impact
- Format: User impact + workarounds
- Frequency: Initial + status changes
Customers:
- Trigger: Service degradation > 10%
- Format: Status page + email
- Frequency: Initial + resolution
Message Templates:
Initial Notification:
- Issue summary
- Services affected
- User impact
- Current actions
- Next update time
Update Notification:
- Progress made
- Current status
- Revised timeline
- Workarounds available
Resolution Notification:
- Issue resolved
- Root cause summary
- Prevention measures
- Follow-up actions
Impact Reporting
Impact Dashboard
class ImpactDashboard {
constructor() {
this.widgets = {
currentImpact: new ImpactSummaryWidget(),
impactTimeline: new TimelineWidget(),
serviceHealth: new ServiceHealthWidget(),
businessMetrics: new BusinessMetricsWidget(),
predictions: new PredictionsWidget()
};
}
renderDashboard(impactAnalysis) {
const dashboard = {
layout: 'responsive-grid',
refreshInterval: 30, // seconds
widgets: []
};
// Current impact summary
dashboard.widgets.push({
id: 'impact-summary',
type: 'card',
size: 'large',
data: {
title: 'Current Impact',
severity: impactAnalysis.severity,
affectedServices: impactAnalysis.services.length,
userImpact: impactAnalysis.totalUsers,
estimatedLoss: impactAnalysis.financialImpact,
trend: impactAnalysis.trend
}
});
// Service health matrix
dashboard.widgets.push({
id: 'service-health',
type: 'heatmap',
size: 'wide',
data: this.prepareServiceHealthData(impactAnalysis)
});
// Impact timeline
dashboard.widgets.push({
id: 'impact-timeline',
type: 'timeline',
size: 'full-width',
data: this.prepareTimelineData(impactAnalysis)
});
// Business metrics
dashboard.widgets.push({
id: 'business-metrics',
type: 'metrics-grid',
size: 'medium',
data: {
metrics: [
{
label: 'Revenue Impact',
value: impactAnalysis.revenueImpact,
trend: impactAnalysis.revenueTrend,
format: 'currency'
},
{
label: 'SLA Status',
value: impactAnalysis.slaCompliance,
threshold: 99.9,
format: 'percentage'
},
{
label: 'Recovery Time',
value: impactAnalysis.estimatedRecovery,
target: impactAnalysis.rto,
format: 'duration'
}
]
}
});
return dashboard;
}
}
Post-Incident Analysis
class PostIncidentAnalyzer:
def analyze_incident_impact(self, incident_id):
"""Comprehensive post-incident impact analysis"""
incident = self.get_incident(incident_id)
analysis = {
'incident_id': incident_id,
'duration': incident.resolved_at - incident.created_at,
'timeline': self.build_incident_timeline(incident),
'technical_impact': self.analyze_technical_impact(incident),
'business_impact': self.analyze_business_impact(incident),
'response_effectiveness': self.analyze_response(incident),
'lessons_learned': self.extract_lessons(incident),
'improvement_actions': self.generate_improvements(incident)
}
# Technical impact
analysis['technical_impact'] = {
'root_cause': incident.root_cause,
'affected_components': incident.affected_components,
'service_degradation': self.calculate_degradation(incident),
'data_integrity': self.verify_data_integrity(incident),
'performance_impact': self.analyze_performance_impact(incident)
}
# Business impact
analysis['business_impact'] = {
'users_affected': incident.affected_users,
'transactions_failed': incident.failed_transactions,
'revenue_loss': self.calculate_revenue_loss(incident),
'sla_breaches': incident.sla_breaches,
'reputation_impact': self.assess_reputation_impact(incident)
}
# Generate report
analysis['report'] = self.generate_impact_report(analysis)
return analysis
Best Practices
1. Proactive Analysis
- ✅ Regular impact assessments
- ✅ Scenario planning
- ✅ Dependency reviews
- ✅ Risk monitoring
2. Accuracy
- ✅ Validate impact models
- ✅ Historical data analysis
- ✅ Regular model updates
- ✅ Feedback incorporation
3. Speed
- ✅ Real-time analysis
- ✅ Automated assessments
- ✅ Pre-calculated scenarios
- ✅ Quick decision support
4. Communication
- ✅ Clear impact metrics
- ✅ Stakeholder-specific views
- ✅ Regular updates
- ✅ Actionable insights
Integration Examples
Change Management Integration
class ChangeManagementIntegration:
def integrate_impact_analysis(self, change_request):
"""Integrate impact analysis with change management"""
# Run impact analysis
impact = self.impact_analyzer.analyze_change_impact(change_request)
# Update change request
change_request.impact_analysis = impact
change_request.risk_score = impact.risk_score
# Set approval requirements based on impact
if impact.risk_score > 0.8:
change_request.add_approval_requirement('executive')
change_request.add_approval_requirement('business_owner')
elif impact.risk_score > 0.5:
change_request.add_approval_requirement('manager')
change_request.add_approval_requirement('technical_lead')
# Attach mitigation plan
change_request.mitigation_plan = impact.mitigation_plan
# Schedule based on impact
if impact.has_user_impact:
change_request.schedule = self.find_low_impact_window(impact)
# Create rollback plan
change_request.rollback_plan = self.generate_rollback_plan(impact)
return change_request
Monitoring Integration
Monitoring Integration:
Real-time Alerts:
- Component failure detected
- Impact analysis triggered
- Affected services identified
- Business impact calculated
- Notifications sent
Predictive Alerts:
- Risk threshold exceeded
- Impact prediction generated
- Preventive actions suggested
- Approval requested
- Actions implemented
Dashboard Updates:
- Live impact metrics
- Service health scores
- Business KPIs
- Recovery progress
- Prediction accuracy
Next Steps
- 📖 Service Health - Monitoring service health
- 📖 Visualization - Visualizing service maps and impacts
- 📖 Best Practices - Service mapping best practices