Skip to main content

Service Mapping Overview

Service Mapping in NopeSight automatically discovers and maps the relationships between business services and their underlying IT infrastructure. Using AI-powered discovery and real-time dependency tracking, it provides complete visibility into how your services are constructed and how they interact with each other.

What is Service Mapping?

Service Mapping creates a comprehensive, real-time map of your business services by:

  • 🔍 Discovering all components that make up a service
  • 🔗 Mapping dependencies between components
  • 📊 Visualizing service architecture and data flows
  • 🎯 Tracking service health and performance
  • 🤖 Analyzing impact of changes and failures
  • 📈 Optimizing service design and resource allocation

Architecture

Key Concepts

Business Services

Business Service Example:
name: "Online Shopping"
description: "E-commerce platform for customer purchases"
criticality: "Critical"
owner: "E-commerce Team"

components:
entry_points:
- web_frontend
- mobile_api
- cdn_service

application_layer:
- shopping_cart_service
- product_catalog_service
- payment_service
- order_service

middleware:
- message_queue
- cache_cluster
- api_gateway

data_layer:
- customer_database
- product_database
- order_database

infrastructure:
- load_balancers
- web_servers
- app_servers
- database_servers

Service Dependencies

Service Hierarchy

Service Hierarchy:
Business Service:
- Customer-facing service
- Business value focused
- SLA-driven

Technical Service:
- Supporting infrastructure
- Shared components
- Technical capabilities

Application Component:
- Individual applications
- Microservices
- Databases

Infrastructure:
- Servers
- Network devices
- Storage systems

Discovery Methods

Automated Discovery

Traffic-Based Discovery

class TrafficBasedDiscovery:
def discover_dependencies(self, service_entry_point):
"""Discover service dependencies through traffic analysis"""

dependencies = []

# Monitor network traffic
traffic_flows = self.capture_traffic(
source=service_entry_point,
duration='5m',
include_dns=True
)

# Analyze flows
for flow in traffic_flows:
if self.is_service_communication(flow):
dependency = {
'source': flow.source,
'destination': flow.destination,
'protocol': flow.protocol,
'port': flow.port,
'frequency': flow.packet_count,
'data_volume': flow.bytes_transferred,
'latency': flow.avg_latency
}

# Identify service type
dependency['service_type'] = self.identify_service_type(
port=flow.port,
protocol=flow.protocol,
payload_signature=flow.payload_sample
)

dependencies.append(dependency)

# Build dependency graph
return self.build_dependency_graph(dependencies)

Configuration-Based Discovery

Configuration Discovery:
Application Configs:
- Connection strings
- API endpoints
- Service URLs
- Queue names

Infrastructure Configs:
- Load balancer rules
- Firewall policies
- DNS records
- Routing tables

Deployment Configs:
- Docker compose files
- Kubernetes manifests
- Terraform scripts
- Ansible playbooks

AI-Powered Mapping

class AIServiceMapper:
def __init__(self):
self.pattern_recognizer = ServicePatternRecognizer()
self.anomaly_detector = DependencyAnomalyDetector()
self.predictor = ServiceImpactPredictor()

def map_service(self, entry_points):
"""Use AI to map complete service"""

# Initial discovery
components = self.discover_components(entry_points)

# Pattern recognition
service_patterns = self.pattern_recognizer.identify_patterns(
components=components,
known_patterns=self.get_known_patterns()
)

# Validate dependencies
validated_deps = []
for dep in components['dependencies']:
confidence = self.calculate_dependency_confidence(dep)

if confidence > 0.8:
validated_deps.append(dep)
elif confidence > 0.5:
# Manual validation required
validated_deps.append({**dep, 'requires_validation': True})

# Predict missing components
predicted_components = self.predictor.predict_missing_components(
known_components=components,
service_type=service_patterns['type']
)

return self.build_service_map(
components=components,
validated_dependencies=validated_deps,
predictions=predicted_components
)

Service Modeling

Service Definition

service_definition:
metadata:
name: "Payment Processing Service"
version: "2.1.0"
description: "Handles all payment transactions"
business_criticality: "Critical"
compliance_requirements: ["PCI-DSS", "SOX"]

ownership:
business_owner: "Finance Department"
technical_owner: "Payment Team"
on_call_team: "payment-oncall"

sla:
availability: 99.99%
response_time_p99: 500ms
throughput: "10000 tps"

components:
entry_points:
- name: "Payment API"
type: "REST API"
endpoint: "https://api.payment.company.com"

services:
- name: "Payment Gateway"
type: "Application"
technology: "Java Spring Boot"
instances: 5

- name: "Fraud Detection"
type: "ML Service"
technology: "Python"
instances: 3

databases:
- name: "Transaction DB"
type: "PostgreSQL"
role: "Primary"
size: "2TB"

external_dependencies:
- name: "Bank API"
type: "External Service"
criticality: "High"

Dynamic Service Discovery

class DynamicServiceMapper {
async mapService(entryPoint) {
// Phase 1: Entry point analysis
const entryPointAnalysis = await this.analyzeEntryPoint(entryPoint);

// Phase 2: Follow connections
const connections = await this.traceConnections(entryPointAnalysis);

// Phase 3: Component identification
const components = await this.identifyComponents(connections);

// Phase 4: Dependency mapping
const dependencies = await this.mapDependencies(components);

// Phase 5: Service boundary detection
const serviceBoundaries = await this.detectServiceBoundaries(
components,
dependencies
);

// Phase 6: Build service model
return this.buildServiceModel({
entryPoint,
components,
dependencies,
boundaries: serviceBoundaries,
metadata: await this.gatherMetadata(components)
});
}

async traceConnections(entryPoint) {
const connections = new Map();
const queue = [entryPoint];
const visited = new Set();

while (queue.length > 0) {
const current = queue.shift();
if (visited.has(current.id)) continue;

visited.add(current.id);

// Get all connections from this component
const outgoing = await this.getOutgoingConnections(current);
const incoming = await this.getIncomingConnections(current);

connections.set(current.id, {
component: current,
outgoing,
incoming
});

// Add unvisited connections to queue
[...outgoing, ...incoming].forEach(conn => {
if (!visited.has(conn.target.id)) {
queue.push(conn.target);
}
});
}

return connections;
}
}

Visualization

Interactive Service Maps

Visualization Features:
Layout Algorithms:
- Hierarchical: Business service tree
- Force-directed: Organic relationships
- Circular: Service ecosystems
- Matrix: Dependency grid

Visual Elements:
Components:
- Shape: By component type
- Color: By health status
- Size: By importance/traffic
- Icons: Technology indicators

Connections:
- Thickness: Data volume
- Style: Connection type
- Animation: Real-time flow
- Color: Latency/health

Interactivity:
- Zoom and pan
- Component details on hover
- Click to drill down
- Filter by various criteria
- Real-time updates

Service Health Visualization

// Real-time service health monitoring
class ServiceHealthVisualizer {
constructor(serviceId) {
this.serviceId = serviceId;
this.healthMetrics = new HealthMetricsCollector();
this.visualization = new D3ServiceMap();
}

updateHealthStatus() {
// Collect health metrics
const componentHealth = this.healthMetrics.getComponentHealth(this.serviceId);

// Update visualization
componentHealth.forEach(component => {
const node = this.visualization.getNode(component.id);

// Update node appearance based on health
node.update({
color: this.getHealthColor(component.health),
pulseAnimation: component.hasIncident,
metrics: {
cpu: component.cpu,
memory: component.memory,
errorRate: component.errorRate,
responseTime: component.responseTime
}
});

// Update connection health
component.connections.forEach(conn => {
const edge = this.visualization.getEdge(conn.id);
edge.update({
color: this.getLatencyColor(conn.latency),
thickness: this.getTrafficThickness(conn.traffic),
animation: conn.isActive ? 'flow' : 'none'
});
});
});

// Update service-level indicators
this.updateServiceIndicators(componentHealth);
}
}

Impact Analysis

Change Impact Prediction

class ChangeImpactAnalyzer:
def analyze_change_impact(self, component_id, change_type):
"""Analyze impact of proposed change"""

service_map = self.get_service_map(component_id)

impact_analysis = {
'change_summary': {
'component': component_id,
'type': change_type,
'scheduled_time': self.get_change_window()
},
'direct_impact': [],
'cascading_impact': [],
'business_impact': {},
'risk_assessment': {}
}

# Direct dependencies
direct_deps = service_map.get_direct_dependencies(component_id)
for dep in direct_deps:
impact = self.calculate_direct_impact(dep, change_type)
impact_analysis['direct_impact'].append(impact)

# Cascading effects
cascading = self.trace_cascading_impact(
component_id,
change_type,
max_depth=5
)
impact_analysis['cascading_impact'] = cascading

# Business impact
affected_services = self.get_affected_business_services(
component_id,
cascading
)

for service in affected_services:
business_impact = {
'service': service.name,
'criticality': service.criticality,
'affected_users': self.estimate_affected_users(service),
'revenue_impact': self.estimate_revenue_impact(service),
'sla_risk': self.assess_sla_risk(service, change_type)
}
impact_analysis['business_impact'][service.id] = business_impact

# Risk assessment
impact_analysis['risk_assessment'] = self.assess_overall_risk(
impact_analysis
)

return impact_analysis

Failure Impact Simulation

Failure Scenarios:
Component Failure:
- Immediate service degradation
- Cascading failures
- Failover activation
- Performance impact

Network Failure:
- Connectivity loss
- Increased latency
- Route changes
- Partition scenarios

Dependency Failure:
- External service outage
- Database unavailability
- Cache failure
- Queue backup

Simulation Results:
- Affected services list
- User impact estimation
- Recovery time objective
- Mitigation recommendations

Service Optimization

Dependency Optimization

class ServiceOptimizer:
def analyze_service_architecture(self, service_id):
"""Analyze and recommend optimizations"""

service = self.get_service(service_id)
optimizations = []

# Analyze dependencies
dep_analysis = self.analyze_dependencies(service)

# Check for anti-patterns
if self.has_circular_dependencies(dep_analysis):
optimizations.append({
'type': 'circular_dependency',
'severity': 'high',
'components': self.get_circular_dependencies(dep_analysis),
'recommendation': 'Refactor to remove circular dependencies',
'impact': 'Improved stability and maintainability'
})

# Check for bottlenecks
bottlenecks = self.identify_bottlenecks(service)
for bottleneck in bottlenecks:
optimizations.append({
'type': 'performance_bottleneck',
'severity': 'medium',
'component': bottleneck.component,
'metrics': bottleneck.metrics,
'recommendation': bottleneck.suggestion,
'estimated_improvement': bottleneck.improvement_estimate
})

# Check for single points of failure
spofs = self.find_single_points_of_failure(service)
for spof in spofs:
optimizations.append({
'type': 'single_point_of_failure',
'severity': 'critical',
'component': spof.component,
'recommendation': f'Add redundancy for {spof.component}',
'implementation': spof.redundancy_options
})

# Cost optimization
cost_opts = self.analyze_cost_optimization(service)
optimizations.extend(cost_opts)

return self.prioritize_optimizations(optimizations)

Performance Analysis

class ServicePerformanceAnalyzer {
analyzeServicePerformance(serviceId) {
const service = this.getService(serviceId);
const analysis = {
overall_health: this.calculateOverallHealth(service),
bottlenecks: [],
optimization_opportunities: [],
capacity_planning: {}
};

// Analyze each component
service.components.forEach(component => {
const metrics = this.getComponentMetrics(component.id);

// Check for performance issues
if (metrics.responseTime.p99 > component.sla.responseTime) {
analysis.bottlenecks.push({
component: component.name,
issue: 'High response time',
current: metrics.responseTime.p99,
target: component.sla.responseTime,
impact: this.calculateImpact(component, service)
});
}

// Check resource utilization
if (metrics.cpu.average > 80) {
analysis.optimization_opportunities.push({
component: component.name,
type: 'scaling',
current_utilization: metrics.cpu.average,
recommendation: 'Scale out or optimize code',
estimated_cost: this.estimateScalingCost(component)
});
}
});

// Capacity planning
analysis.capacity_planning = this.projectCapacityNeeds(service);

return analysis;
}
}

Integration Capabilities

CI/CD Integration

CI/CD Integration:
Pre-deployment Validation:
- Service dependency check
- Impact analysis
- Risk assessment
- Approval routing

Deployment Tracking:
- Real-time map updates
- Version tracking
- Rollback mapping
- Success validation

Post-deployment:
- Service validation
- Performance comparison
- Dependency verification
- Alert configuration

Monitoring Integration

class MonitoringIntegration:
def integrate_with_monitoring(self, service_map):
"""Integrate service map with monitoring systems"""

# Create monitoring topology
monitoring_config = {
'service': service_map.service_id,
'components': []
}

for component in service_map.components:
component_monitoring = {
'id': component.id,
'name': component.name,
'type': component.type,
'monitors': self.create_monitors(component),
'alerts': self.create_alerts(component),
'dashboards': self.create_dashboards(component)
}

monitoring_config['components'].append(component_monitoring)

# Create service-level monitoring
monitoring_config['service_monitors'] = self.create_service_monitors(
service_map
)

# Deploy configuration
self.deploy_monitoring_config(monitoring_config)

return monitoring_config

Best Practices

1. Discovery Strategy

  • ✅ Start with critical business services
  • ✅ Use multiple discovery methods
  • ✅ Validate automated discoveries
  • ✅ Regular re-discovery cycles

2. Mapping Accuracy

  • ✅ Verify component boundaries
  • ✅ Validate dependencies
  • ✅ Include external services
  • ✅ Document assumptions

3. Maintenance

  • ✅ Keep maps up-to-date
  • ✅ Track service changes
  • ✅ Regular validation
  • ✅ Version control maps

4. Usage

  • ✅ Share with all stakeholders
  • ✅ Use for change planning
  • ✅ Enable for incident response
  • ✅ Drive optimization efforts

Service Catalog

Service Documentation

Service Catalog Entry:
service_id: "SVC-001"
name: "Customer Portal"

description: |
Web-based portal for customer self-service including
account management, order tracking, and support.

business_information:
owner: "Customer Experience Team"
criticality: "High"
users: "External Customers"
revenue_impact: "$10M/month"

technical_information:
architecture: "Microservices"
technology_stack:
- "React Frontend"
- "Node.js APIs"
- "PostgreSQL Database"
- "Redis Cache"
hosting: "AWS us-east-1"

dependencies:
internal:
- "Authentication Service"
- "Order Management System"
- "Payment Gateway"
external:
- "CDN Provider"
- "Email Service"
- "SMS Gateway"

documentation:
- architecture_diagram
- runbook
- disaster_recovery_plan
- api_documentation

Next Steps